microPREP[™] 2.0

High-Volume Laser-Based Sample Preparation for Semiconductor and Materials Failure Analysis

microPREP[™] 2.0 enables high-volume sample preparation of metals, semiconductors, ceramics, and compound materials for microstructure diagnostics and failure analysis. The system can be used for a variety of semiconductor sample preparation applications, including in-plane geometries and bulk samples. Full line cuts, cross-sections, and box millings for diagnostics of electrical connections and 3D chip level structure are available for complex investigations of complete devices. microPREP[™] 2.0 complements existing approaches to sample preparation such as FIB processing. The system is also suited for SEM inspection of advanced-packaging devices, X-ray microscopy, atom probe tomography, and micro mechanical testing. microPREP[™] 2.0 offers:

- Shorter time to sample: up to 10,000 times faster than FIB
- Up to an order of magnitude lower cost of ownership
- High degree of automation due to recipe-based, ergonomic user interface
- Virtually no structural damage and no elemental contamination by ps laser processing
- Providing larger-sized samples with micron-level precision
- Enables the creation of samples with complicated/3D shapes (TSVs, SiP)
- Meets the essential requirements of the SEMI S2/S8

microPREP[™] 2.0 - System Description

Workpiece size	 Up to 25 x 25 x 10 mm³ Bigger samples sizes on request 			
Alignment	Work piece alignment with optical measurement system			
Positioning	Process accuracy ± 0.003 mm (XY)Customized motion concept			
Fixtures	Included: • Cutting • Thinning • XL-Chunk [™] (manual) Options: • mXL-Chunk [™] (motorized) • XRM-2 • Utility			
Processes	 TEM: grids, chunks, and thinning of lamellas Failure analysis and SEM-inspection: box milling, line cutting, multiple forms, amounts and ramps X-Ray Microscopy (XRM) and APT: grids, chunks, custom shapes, and pillars Patterning: custom shapes 			
Laser unit	 Integrated pulsed DPSS laser source Galvanometer scanner Power measurement on sample level 			
Software	 Software guided workflows Recipe based process control Intuitive menu guided touch screen operation Multiple user concept with different user levels Integrated data and sample management 			
Safety	Laser class 1 housing with integrated control panelIntegrated exhaust system			
Dimensions	 Desktop system: 980 x 700 x 759 mm³ (L x W x H), approx. 200 kg 			
Consumables	Compressed air or inert gases: up to 250 l/min (max. 6 - 10 bar)			
Electrical connection	 230 V, 50/60 Hz, 8 A 110 V, 50/60 Hz, 16 A 			
Options	 CO, snow jet cleaning Custom shape import Stand alone pedestal 			

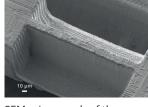
microPREP[™] 2.0 - Process Flows

1. In-Plane Geometries and Bulk Samples (Cutting/Thinning)

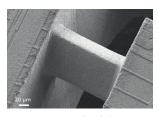
For investigation of bulk-samples by transmission electron microscopy (TEM), microPREP™ offers an unique three-stage approach. This includes laser-cutting of a monolithic basic structure from a feedstock followed by subsequent laser-thinning to a few micron thickness and final thinning to electron transparency using either a broad ion beam (BIB) or a focused ion beam (FIB) while offering up to 10,000 times higher ablation rates and an order of magnitude lower cost of ownership compared to FIB.

Basic structure cut and thinned (Photovoltaic Si-Wafer)

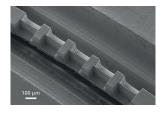
structure in copper after local thinning in an open-box manner


SEM micrograph of a basic structure in a Si-Wafer thinned to < 15 μ m thickness (width of 1 mm)

2. Cross Sections (XL-Chunk[™]/mXL-Chunk[™])


In order to achieve TEM-inspection of cross-sections, microPREP[™] enables "push-the-button"-preparation of site-specific XL-Chunks™ by excavating and undercutting a well-defined volume from an arbitrary but flat sample surface. To further reduce FIB-capacity, XL-Chunks[™] can be laser-thinned automatically to a few micron thicknesses at a region of interest according to customer's needs, while providing order of magnitude time and cost savings compared to traditional sample preparation methods.

Process	Preparation step	microPREP™ steps			Follow-up step	
Cross sections	No preparation	Assembling the plate on a fixture	Laser cutting of XL-Chunk™	Transferring XL-Chunk™ to a handling mount	Local laser thinning of XL-Chunk™ in the handling mount	Final thinning with FIB or BIB
						\longrightarrow


Examples of Application

SEM micrograph of the thinned area of an XL-Chunk[™] prepared from an IC-sample


SEM micrograph of the supporting structure of an XL-Chunk™

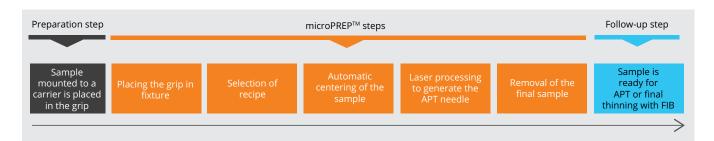
SEM micrograph of an XL-Chunk[™] prepared from an IC-sample which has been thinned at multiple positions

3. X-Ray Microscopy (XRM-2)

For non-destructive 3D-characterization using high resolution X-ray microscopy (XRM), samples of rotational symmetry with some 10 µm diameter are indispencible. While conventional FIB-micromachining would take days or weeks to prepare suitable samples, laser-micromachining of the same geometry using microPREP[™] takes less than 5 minutes.

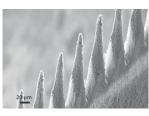
Examples of Application

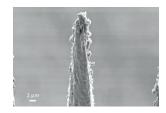
SEM micrograph of an XRM-pillar in an oil-shale


XL-Chunk[™] for XRM mounted on a carrier structure

Effect pigments in a varnish mounted to a steel needle

4. APT Microscopy (XRM-2)


In order to improve sample preparation for atom probe tomography (APT), microPREP[™] enables side-specific cutting of dedicated APT-sample geometries and subsequent sharpening of tips to less than 15 µm diameter. Thus, microPREP[™] not only helps to reduce FIB-capacity, but also improves yield and throughput for APT-measurements.


Examples of Application

Custom shape cut from stainless steel

SEM micrograph of a pillar array in silicon

SEM micrograph of an individual pillar in silicon (diameter < 5 μm)

Overview Sample Fixtures

Fixture	Applications	Benefits		
Cutting (included)	Sample structures for TEMMicro mechanic sample	 Samples up to 25 x 25 mm² Thickness up to 1 mm 		
Thinning (included)	In-plane samplesChunk samplesBulk samples	Free selection and positioning of processing areaClamping force adjustableSupports any standard grids with and without notch		
XL-Chunk™ (included)	X-sections in arbitrary samplesBulk samples (chunks) for TEM and XRM	 Manual movable for centering Mount X/Y travel range 25 x 25 mm² Mount rotation ± 10° Supports any standard 1" and ½" mount 		
mXL-Chunk™ (option)	 X-sections in arbitrary samples Bulk samples (chunks) for TEM and XRM 	 Automated mount position for centering and processing for multiple applications Mount X/Y travel range 40 x 25 mm² Mount rotation 360° Repeatability up to 0.5 µm Supports any standard 1" and ½" mount 		
XRM-2 (option)	 3D structures for grids, bulk samples (chunks) for XRM and APT 	 Automated grip and sample positioning for real centric 3D shaping Grip X/Y travel range ± 7.5 mm Grip rotation 360° Supports ZEISS Xradia Ultra grips 		
Utility (option)	Processing of custom shapes	 Sample size up to 50 x 50 mm² Positioning via fixing clamps Data import of customized shapes 		

mXL-Chunk™

XRM-2 fixture

Thinning fixture

3D-Micromac AG

Technologie-Campus 8 D-09126 Chemnitz Germany

Phone: +49 371 40043 0 Fax: +49 371 40043 40 E-Mail: sales@3d-micromac.com Web: www.3d-micromac.com

Changes in accordance to technical progress are reserved.