Laser-Micromachining for Failure Analysis:

from TEM Sample Preparation to Large Area SEM Inspection (and more)

Michael Grimm, Bernd Keiper, 3D-Micromac AG Michael Krause, Georg Schusser, Fh IWMS Halle (Saale) Bernd Krüger, Lars Alexa, Infineon Neubiberg Jörg Krinke, BOSCH Reutlingen

1. 3D-Micromac – Micromachining Excellence

2. Laser: a powerful tool for sample preparation

3. From TEM to SEM: workflows and examples

4. Outlook

5. Conclusion

We are the leading specialist in laser micromachining.

Our mission:

- Development of powerful, user-friendly, and future-oriented micromachining processes
- Manufacturing of
 - Laser micromachining systems and
 - Roll to roll processing systems
- All processes and system with superior production efficiency
- Reliable and fast service for micromachining systems worldwide

"Our international customers place great value on future-oriented and user-friendly processes. Our solutions help them increase production efficiency and lower cost". *Tino Petsch, CEO*

Production Solutions for Innovators and Growth Markets

microDICE[™] Systems for Semiconductor Industry

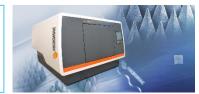
Production equipment for the separation of semiconductor wafers using TLS-Dicing[™]

microCELL[™] Systems for Photovoltaics

- High throughput laser processing of crystalline solar cells
- Laser structuring of PERC solar cells
 Half cell cutting to increase PV module power

microPREP[™] Laser Based Microdiagnostics Sample Preparation

• Enables high-throughput, clean, and efficient laser ablation for the preparation of samples for microstructure diagnostics and failure analysis

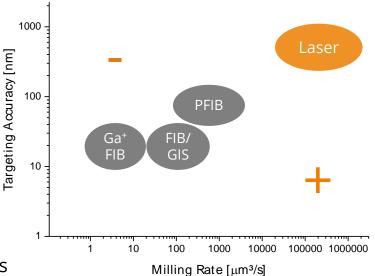

microSHAPE[™] Systems for Machining of Displays and Smart Glasses

 Laser cutting of conventional and tempered glass and sapphire - FSLA™ Flow supported laser ablation for high quality production of complex microstructures

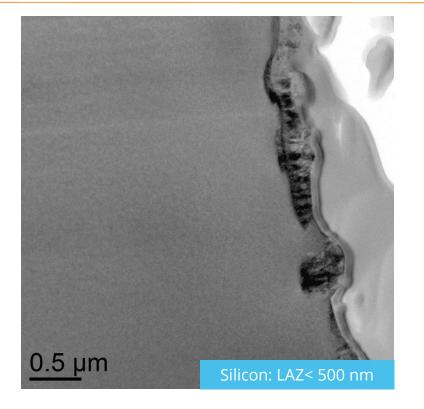
1. 3D-Micromac – Micromachining Excellence

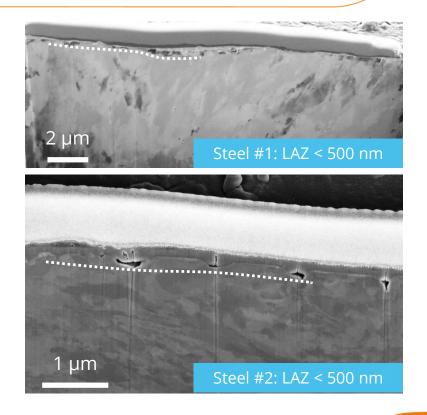
2. Laser: a powerful tool for sample preparation

3. From TEM to SEM: workflows and examples

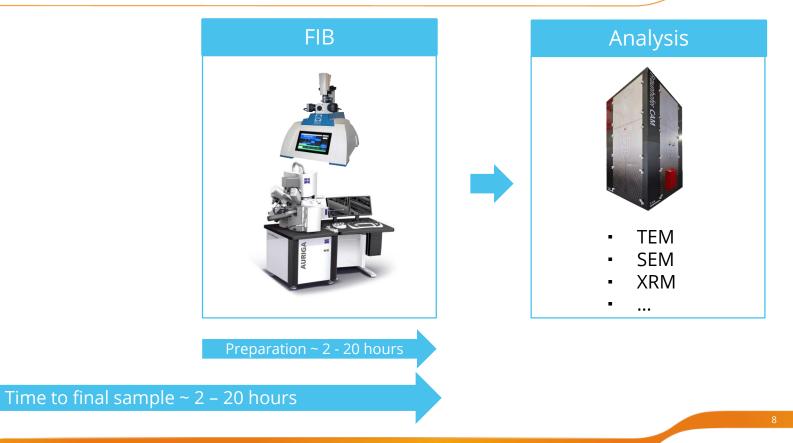

4. Outlook

5. Conclusion

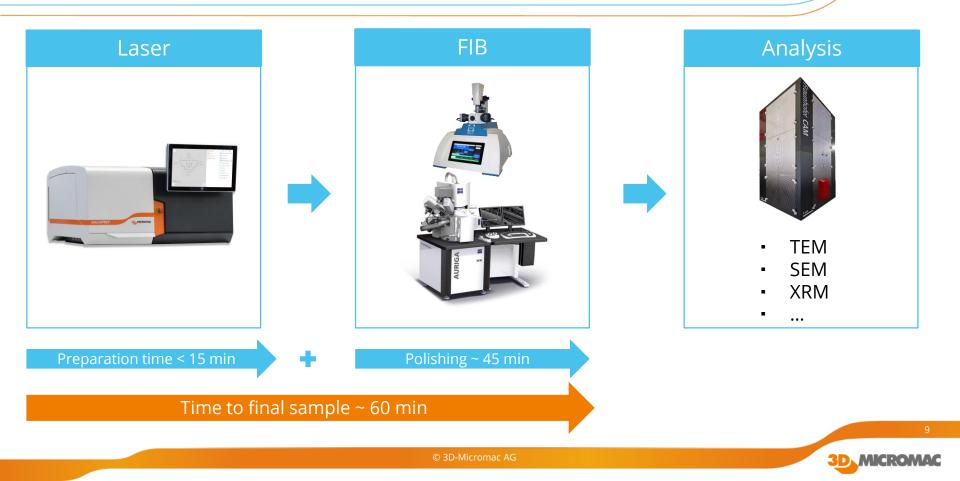

Motivation


- Easy to use
- Low running costs
- Just photons → clean in terms of contamination
- Precise local positioning and focusing
- High power densities → Materials ablation
- High fluence → non-linear optics:
 Multi-photon absorption → Machining even of transparent-at-the-wavelength materials feasible
- Only short FIB fine polishing of laser prepared samples
- Saving expensive machine time of the FIB or broad ion beam tools

» Does the laser harm the sample material? «


Laser Affected Zone using ps Laser

Traditional Preparation Steps



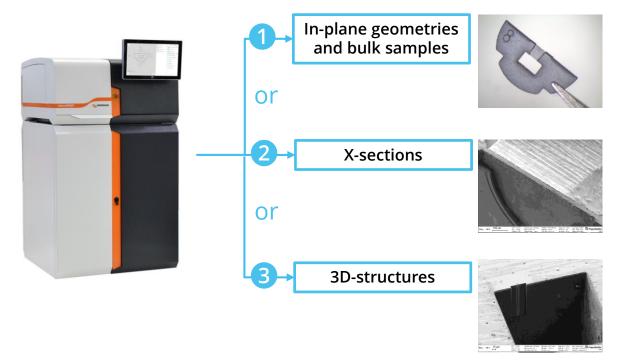
30

MICRO

© 3D-Micromac AG

Combined Sample Preparation using Laser

1. 3D-Micromac – Micromachining Excellence

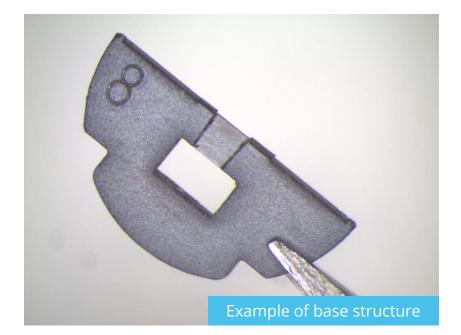

2. Laser: a powerful tool for sample preparation

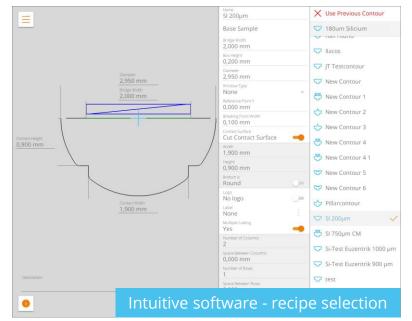
3. From TEM to SEM: workflows and examples

4. Outlook

5. Conclusion

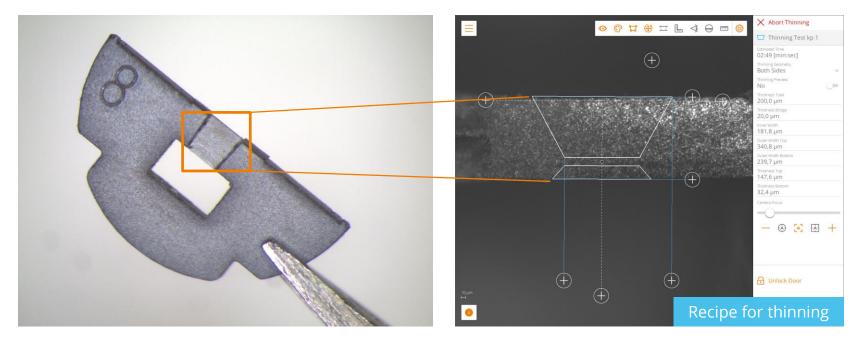
3D-Micromac's microPREP[™] - Patented Workflows




» microPREP[™] provides a best known method (BKM) library for ease-of-use «

3D MICROMAC

In-Plane Geometries and Bulk Material


Defining base structure of lamella

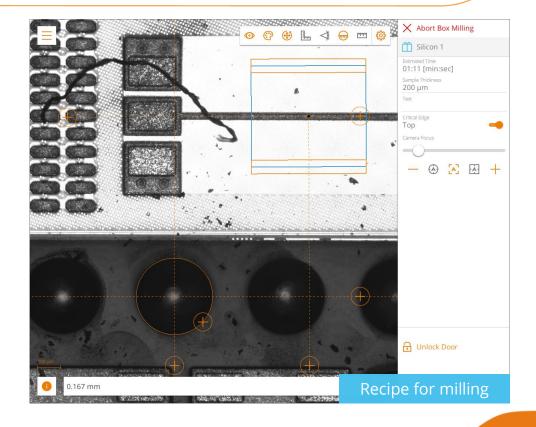
In-Plane Geometries and Bulk Material

Defining thinning area

Preparation of 3D Structures

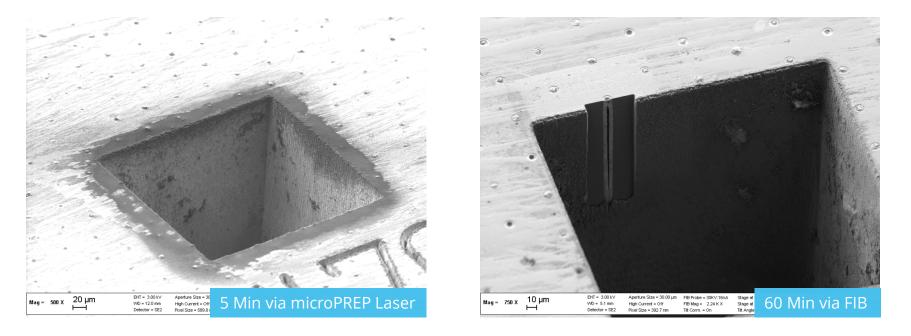
Box Milling

• Defining box area

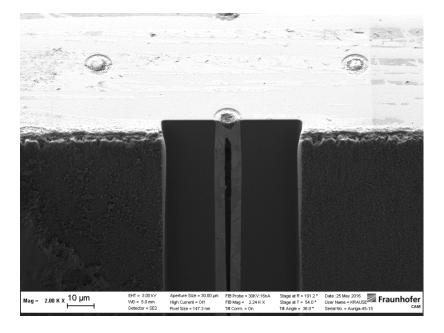

	Geometry Type		
	Dissolve Box	~	🛗 Silicon
	Top Width 0,500 mm		Box 100 Si
	Bottom Width 0,500 mm		Box 200 Si
	Total Height 0,500 mm		🚛 Box 400 Si
	Stage Count Double Stage		🚛 BoxTest
	Secondary Stage Width 0,060 mm		GSP_3DMMGri1 - Typ A 20
	^{Overlap} 0,030 mm		JT_BoxTest
Total Height	Top Edge by 2nd Stage	-	Si_Manchester_klein
0,500 mm	Bottom Edge Normal		Si_Pillar_Box_1
	Right Edge Normal		Si_Pillar_Box_2
	Left Edge Normal		🖣 Standard Box M 🗸 🗸
	Multiple BoxMilling No	0	
	Label None		
			+ Save As Copy
rameter sets. 🗗 🖸		Recip	be for boxing
	<u>0,500 mm</u>	Total Height 0,500 mm Total Height 0,500 mm Sage Court Double Stage Secondary Stage Width 0,060 mm Overlap 0,060 mm Top Edge by 2nd Stage Botom Edge Normal Normal Multiple Bodwling No No Label None	Total Height 0,500 mm Stage Court Double Stage Secondary Stage With 0,060 mm Oxeriap 0,500 mm Top Edge by 2nd Stage by 2nd Stage Botom Edge Normal Right Edge Normal Edit Edge Normal Multiple Bookfiling No Label None ::

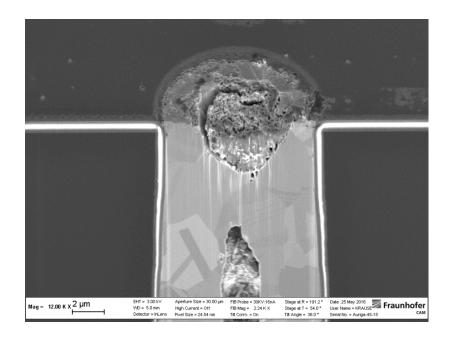
Preparation of 3D Structures

Box Milling


Place box on sample

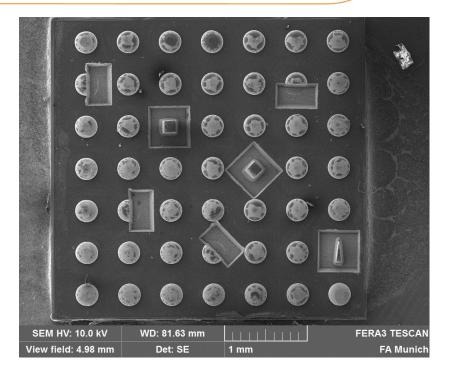
Examples – 3D Structures Sample Preparation for SEM

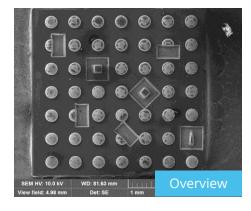

Advanced laser box-milling for subsequent FIB polishing for diagnostic of TSVs



Examples – 3D Structures Sample Preparation for SEM

Advanced laser box-milling for subsequent FIB polishing for diagnostic of TSVs

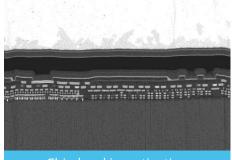




Examples – 3D Structures

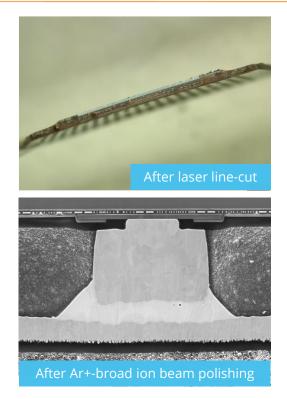
- Advanced laser box-milling,
- Including cutting of solder balls,
- Subsequent FIB polishing,
- Diagnostics of electrical connections and of the structures at chip level

Examples – 3D Structures

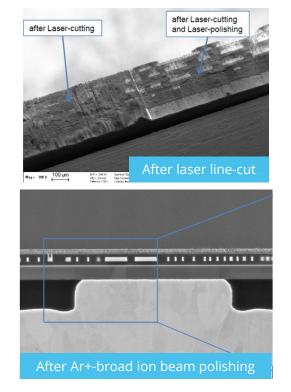

Box milling & cut of solder ball

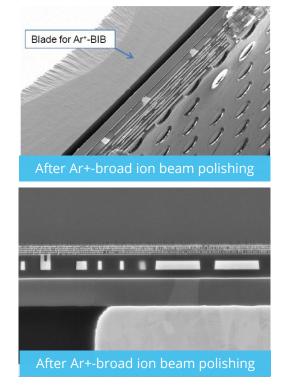
Four-sided preparation

Four-sided preparatior


Chip level investigation

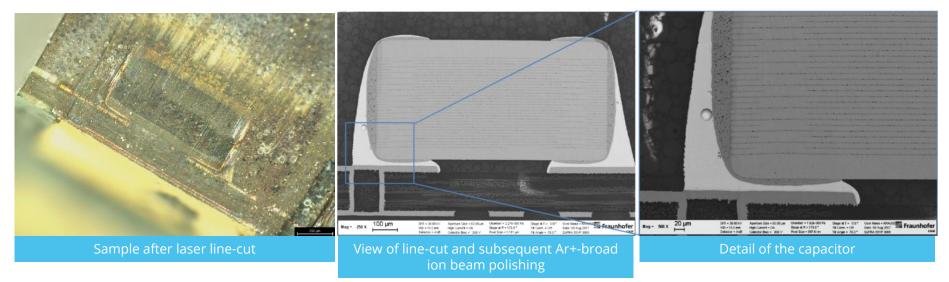
20


3D


MICRON

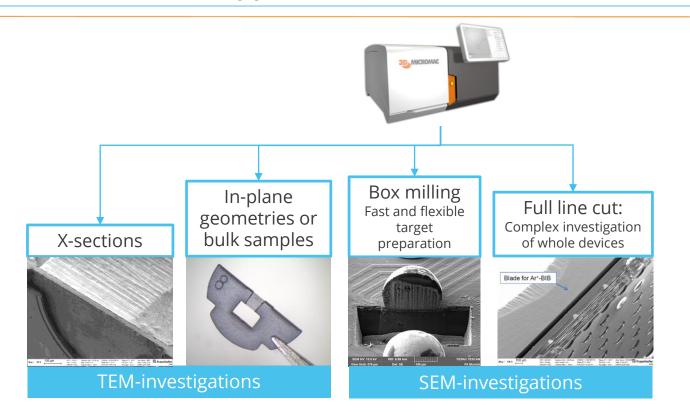
Examples – SiP Sample Preparation for SEM

SiP (Infineon)



21

Examples – SiP Sample Preparation for SEM


Preparation (line-cut) of a SiP device, detail with capacitor

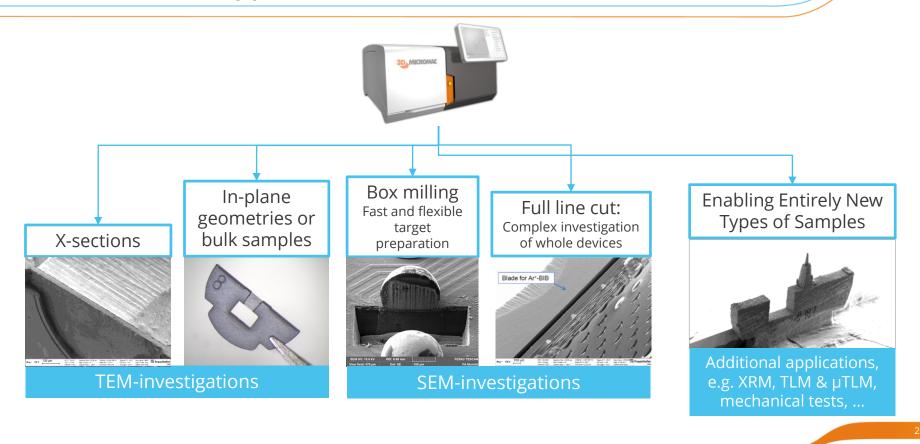
SiP (Bosch)

microPREP[™] – Applications

3D MICROMAC

© 3D-Micromac AG

1. 3D-Micromac – Micromachining Excellence

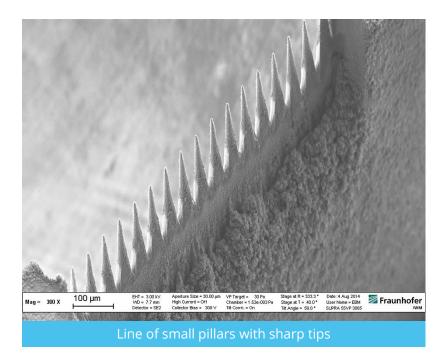

2. Laser: a powerful tool for sample preparation

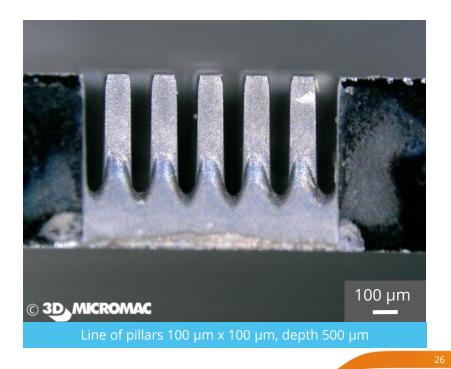
3. From TEM to SEM: workflows and examples

4. Outlook

5. Conclusion

microPREP[™] – Applications

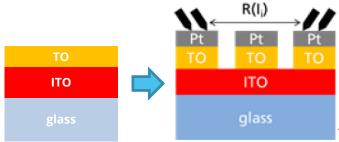




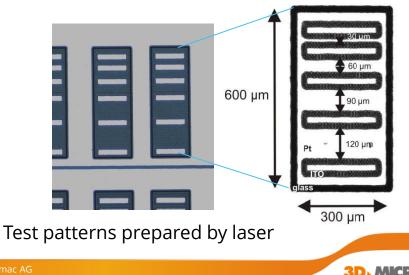
© 3D-Micromac AG

Preparation of Special Structures

Picosecond laser-machined line of pillars in silicon


Laser pattering for microscopic TLM measurements

Question


- Resistivity measurement of thin layers on top of layers with lower sheet resistance
- Up to now top layer with highest resistivity cannot be characterized by means of TLM*

Solution

- Microscopic test patterns by material selective laser ablation**
- Benefits
- Quick preparation
- Reliable TLM measurements
- Access to single layer properties

Material selective patterning for TLM

1. 3D-Micromac – Micromachining Excellence

2. Laser: a powerful tool for sample preparation

3. From TEM to SEM: workflows and examples

4. Outlook

5. Conclusion

Value Proposition

- ✓ User friendliness due to `Simple use' concept
- ✓ Up to 10.000 times faster than FIB
- Keeps your FIB instrument clean
- Reproducible & automatable
- ✓ Artefact-free
- ✓ Large areas and/or depth cuts
- Very Attractive costs of ownership
- BKM library Fixed workflows for bulk and x-sections
- Easy workflow adoption user definable and customized
- Meets the essential requirements of the SEMI S2/S8

This work has been (partly) performed in the project SAM3, where the German partners are funded by the German Bundesministerium für Bildung und Forschung (BMBF) under contract 16ES0347 and the French partners by the French Ministry for Industry and Economy.

SAM3 is a joint project running in the European EUREKA EURIPIDES and CATRENE programs.

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

3D-Micromac AG Dr. Michael Grimm Technologie-Campus 8 09126 Chemnitz, Germany

http://3d-micromac.com

Phone: +49 371 400 43 957 E-Mail: grimm@3d-micromac.com

Visit us at Booth 8!

